下面是小编为大家整理的高中数学必修4教案五篇(全文完整),供大家参考。
作为一位无私奉献的人民教师,很有必要精心设计一份教案,教案是教学蓝图,可以有效提高教学效率。那么你有了解过教案吗?这里给大家分享一些关于高中数学必修4教案,方便大家学习。下面是的小编为您带来的5篇《高中数学必修4教案》,如果能帮助到您,将不胜荣幸。
高中高二数学必修四教案 篇一
一、说教材:
1、地位、作用和特点:
《___》是高中数学课本第__册(_修)的第__章“___”的第__节内容。
本节是在学习了之后编排的。通过本节课的学习,既可以对的知识进一步巩固和深化,又可以为后面学习打下基础,所以是本章的重要内容。此外,《__》的知识与我们日常生活、生产、科学研究有着密切的联系,因此学习这部分有着广泛的现实意义。本节的特点之一是__;特点之二是:___。
教学目标:
根据《教学大纲》的要求和学生已有的知识基础和认知能力,确定以下教学目标:
(1)知识目标:A、B、C
(2)能力目标:A、B、C
(3)德育目标:A、B
教学的重点和难点:
(1)教学重点:
(2)教学难点:
二、说教法:
基于上面的教材分析,我根据自己对研究性学习“启发式”教学模式和新课程改革的理论认识,结合本校学生实际,主要突出了几个方面:一是创设问题情景,充分调动学生求知欲,并以此来激发学生的探究心理。二是运用启发式教学方法,就是把教和学的各种方法综合起来统一组织运用于教学过程,以求获得效果。另外还注意获得和交换信息渠道的综合、教学手段的综合和课堂内外的综合。并且在整个教学设计尽量做到注意学生的心理特点和认知规律,触发学生的思维,使教学__真正成为学生的学习过程,以思维教学代替单纯的记忆教学。三是注重渗透数学思考方法(联想法、类比法、数形结合等一般科学方法)。让学生在探索学习知识的过程中,领会常见数学思想方法,培养学生的探索能力和创造性素质。四是注意在探究问题时留给学生充分的时间,以利于开放学生的思维。当然这就应在处理教学内容时能够做到叶老师所说“教就是为了不教”。因此,拟对本节课设计如下教学程序:
导入新课新课教学反馈发展
三、说学法:
学生学习的过程实际上就是学生主动获取、整理、贮存、运用知识和获得学习能力的过程,因此,我觉得在教学中,指导学生学习时,应尽量避免单纯地、直露地向学生灌输某种学习方法。有效的能被学生接受的学法指导应是渗透在教学过程中进行的,是通过优化教学程序来增强学法指导的目的性和实效性。在本节课的教学中主要渗透以下几个方面的学法指导。
1、培养学生学会通过自学、观察、实验等方法获取相关知识,使学生在探索研究过程中分析、归纳、推理能力得到提高。
本节教师通过列举具体事例来进行分析,归纳出,并依据此知识与具体事例结合、推导出,这正是一个分析和推理的全过程。
2、让学生亲自经历运用科学方法探索的过程。主要是努力创设应用科学方法探索、解决问题情境,让学生在探索中体会科学方法,如在讲授时,可通过演示,创设探索规律的情境,引导学生以可靠的事实为基础,经过抽象思维揭示内在规律,从而使学生领悟到把可靠的事实和深刻的理论思维结合起来的特点。
3、让学生在探索性实验中自己摸索方法,观察和分析现象,从而发现“新”的问题或探索出“新”的规律。从而培养学生的发散思维和收敛思维能力,激发学生的创造动力。在实践中要尽可能让学生多动脑、多动手、多观察、多交流、多分析;老师要给学生多点拨、多启发、多激励,不断地寻找学生思维和操作上的闪光点,及时总结和推广。
4、在指导学生解决问题时,引导学生通过比较、猜测、尝试、质疑、发现等探究环节选择合适的概念、规律和解决问题方法,从而克服思维定势的消极影响,促进知识的正向迁移。如教师引导学生对比中,蕴含的本质差异,从而摆脱知识迁移的负面影响。这样,既有利于学生养成认真分析过程、善于比较的好习惯,又有利于培养学生通过现象发掘知识内在本质的能力。
四、教学过程:
(一)、课题引入:
教师创设问题情景(创设情景:A、教师演示实验。B、使用多媒体模拟一些比较有趣、与生活实践比较有关的事例。C、讲述数学科学的有关情况。)激发学生的探究__,引导学生提出接下去要研究的问题。
(二)、新课教学:
1、针对上面提出的问题,设计学生动手实践,让学生通过动手探索有关的知识,并引导学生进行交流、讨论得出新知,并进一步提出下面的问题。
2、组织学生进行新问题的实验方法设计—这时在设计上是有对比性、数学方法性的设计实验,指导学生实验、通过多媒体的辅助,显示学生的实验数据,模拟强化出实验情况,由学生分析比较,归纳总结出知识的结构。
(三)、实施反馈:
1、课堂反馈,迁移知识(迁移到与生活有关的例子)。让学生分析有关的问题,实现知识的升华、实现学生的再次创新。
2、课后反馈,延续创新。通过课后练习,学生互改作业,课后研实验,实现课堂内外的综合,实现创新精神的延续。
五、板书设计:
在教学中我把黑板分为三部分,把知识要点写在左侧,中间知识推导过程,右边实例应用。
六、说课综述:
以上是我对《___》这节教材的认识和对教学过程的设计。在整个课堂中,我引导学生回顾前面学过的知识,并把它运用到对的认识,使学生的认知活动逐步深化,既掌握了知识,又学会了方法。
总之,对课堂的设计,我始终在努力贯彻以教师为主导,以学生为主体,以问题为基础,以能力、方法为主线,有计划培养学生的自学能力、观察和实践能力、思维能力、应用知识解决实际问题的能力和创造能力为指导思想。并且能从各种实际出发,充分利用各种教学手段来激发学生的学习兴趣,体现了对学生创新意识的培养。
高中高二数学必修四教案 篇二
教学目标
1、掌握平面向量的数量积及其几何意义;
2、掌握平面向量数量积的重要性质及运算律;
3、了解用平面向量的数量积可以处理有关长度、角度和垂直的问题;
4、掌握向量垂直的条件。
教学重难点
教学重点:平面向量的数量积定义
教学难点:平面向量数量积的定义及运算律的理解和平面向量数量积的应用
教学工具
投影仪
教学过程
一、复习引入:
1、向量共线定理向量与非零向量共线的充要条件是:有且只有一个非零实数λ,使=λ
五,课堂小结
(1)请学生回顾本节课所学过的知识内容有哪些?所涉及到的主要数学思想方法有那些?
(2)在本节课的学习过程中,还有那些不太明白的地方,请向老师提出。
(3)你在这节课中的表现怎样?你的体会是什么?
六、课后作业
P107习题2.4A组2、7题
课后小结
(1)请学生回顾本节课所学过的知识内容有哪些?所涉及到的主要数学思想方法有那些?
(2)在本节课的学习过程中,还有那些不太明白的地方,请向老师提出。
(3)你在这节课中的表现怎样?你的体会是什么?
课后习题
作业
P107习题2.4A组2、7题
高中高二数学必修四教案 篇三
一、教学目标
1、把握菱形的判定。
2、通过运用菱形知识解决具体问题,提高分析能力和观察能力。
3、通过教具的演示培养学生的学习爱好。
4、根据平行四边形与矩形、菱形的从属关系,通过画图向学生渗透集合思想。
二、教法设计
观察分析讨论相结合的方法
三、重点·难点·疑点及解决办法
1、教学重点:菱形的判定方法。
2、教学难点:菱形判定方法的综合应用。
四、课时安排
1课时
五、教具学具预备
教具(做一个短边可以运动的平行四边形)、投影仪和胶片,常用画图工具
六、师生互动活动设计
教师演示教具、创设情境,引入新课,学生观察讨论;学生分析论证方法,教师适时点拨
七、教学步骤
复习提问
1、叙述菱形的定义与性质。
2、菱形两邻角的比为1:2,较长对角线为,则对角线交点到一边距离为________.
引入新课
师问:要判定一个四边形是不是菱形最基本的判定方法是什么方法?
生答:定义法。
此外还有别的两种判定方法,下面就来学习这两种方法。
讲解新课
菱形判定定理1:四边都相等的四边形是菱形。
菱形判定定理2:对角钱互相垂直的'平行四边形是菱形。图1
分析判定1:首先证它是平行四边形,再证一组邻边相等,依定义即知为菱形。
分析判定2:
师问:本定理有几个条件?
生答:两个。
师问:哪两个?
生答:(1)是平行四边形(2)两条对角线互相垂直。
师问:再需要什么条件可证该平行四边形是菱形?
生答:再证两邻边相等。
(由学生口述证实)
证实时让学生注重线段垂直平分线在这里的应用,
师问:对角线互相垂直的四边形是菱形吗?为什么?
可画出图,显然对角线,但都不是菱形。
菱形常用的判定方法归纳为(学生讨论归纳后,由教师板书):
注重:(2)与(4)的题设也是从四边形出发,和矩形一样它们的题没条件都包含有平行四边形的判定条件。
例4已知:的对角钱的垂直平分线与边、分别交于、,如图。
求证:四边形是菱形(按教材讲解)。
总结、扩展
1、小结:
(1)归纳判定菱形的四种常用方法。
(2)说明矩形、菱形之间的区别与联系。
2、思考题:已知:如图4△中,,平分,,,交于。
求证:四边形为菱形。
八、布置作业
教材P159中9、10、11、13
高中高二数学必修四教案 篇四
一、教学内容分析
圆锥曲线的定义反映了圆锥曲线的本质属性,它是无数次实践后的高度抽象、恰当地利用定义__题,许多时候能以简驭繁、因此,在学习了椭圆、双曲线、抛物线的定义及标准方程、几何性质后,再一次强调定义,学会利用圆锥曲线定义来熟练的解题”。
二、学生学习情况分析
我所任教班级的学生参与课堂教学活动的积极性强,思维活跃,但计算能力较差,推理能力较弱,使用数学语言的表达能力也略显不足。
三、设计思想
由于这部分知识较为抽象,如果离开感性认识,容易使学生陷入困境,降低学习热情、在教学时,借助多媒体动画,引导学生主动发现问题、解决问题,主动参与教学,在轻松愉快的环境中发现、获取新知,提高教学效率、
四、教学目标
1、深刻理解并熟练掌握圆锥曲线的定义,能灵活应用__解决问题;熟练掌握焦点坐标、顶点坐标、焦距、离心率、准线方程、渐近线、焦半径等概念和求法;能结合平面几何的基本知识求解圆锥曲线的方程。
2、通过对练习,强化对圆锥曲线定义的理解,提高分析、解决问题的能力;通过对问题的不断引申,精心设问,引导学生学习解题的一般方法。
3、借助多媒体辅助教学,激发学习数学的兴趣、
五、教学重点与难点:
教学重点
1、对圆锥曲线定义的理解
2、利用圆锥曲线的定义求“最值”
3、“定义法”求轨迹方程
教学难点:
巧用圆锥曲线定义__
高中数学必修4优秀教案 篇五
教学准备
教学目标
1、 知识与技能
(1)进一步理解表达式y=Asin(ωx+φ),掌握A、φ、ωx+φ的含义;(2)熟练掌握由 的图象得到函数 的图象的方法;(3)会由函数y=Asin(ωx+φ)的图像讨论其性质;(4)能解决一些综合性的问题。
2、 过程与方法
通过具体例题和学生练习,使学生能正确作出函数y=Asin(ωx+φ)的图像;并根据图像求解关系性质的问题;讲解例题,总结方法,巩固练习。
3、 情感态度与价值观
通过本节的学习,渗透数形结合的思想;通过学生的亲身实践,引发学生学习兴趣;创设问题情景,激发学生分析、探求的学习态度;让学生感受数学的严谨性,培养学生逻辑思维的缜密性。
教学重难点
重点:函数y=Asin(ωx+φ)的图像,函数y=Asin(ωx+φ)的性质。
难点: 各种性质的应用。
教学工具
投影仪
教学过程
【创设情境,揭示课题】
函数y=Asin(ωx+φ)的性质问题,是三角函数中的重要问题,是高中数学的重点内容,也是高考的热点,因为,函数y=Asin(ωx+φ)在我们的实际生活中可以找到很多模型,与我们的生活息息相关。
五、归纳整理,整体认识
(1)请学生回顾本节课所学过的知识内容有哪些?所涉及到主要数学思想方法有那些?
(2)在本节课的学习过程中,还有那些不太明白的地方,请向老师提出。
(3)你在这节课中的表现怎样?你的体会是什么?
六、布置作业: 习题1-7第4,5,6题。
课后小结
归纳整理,整体认识
(1)请学生回顾本节课所学过的知识内容有哪些?所涉及到主要数学思想方法有那些?
(2)在本节课的学习过程中,还有那些不太明白的地方,请向老师提出。
(3)你在这节课中的表现怎样?你的体会是什么?
课后习题
作业: 习题1-7第4,5,6题。
板书
略
以上就是为大家整理的5篇《高中数学必修4教案》,希望对您有一些参考价值。
推荐访问:必修 教案 高中数学 高中数学必修4教案五篇 高中高二数学必修四教案 高一数学必修四教案